Chat with us, powered by LiveChat
  • Technology
  • Products
  • Services
    • Compound profiling & Screening
      • Get robust compound data in human tissue models through our OrganoServices. With proven pheno­typic assays in the OrganoPlate® platform, we support your drug discovery and development needs.
    • Custom Model & Assay Development
      • We create novel human tissue and disease models in the OrganoPlate® platform. Our experts are looking forward to developing assays according to your specifications.
    • Drug Development Partnerships
      • Expand your drug discovery capacity, shoulder to shoulder with our scientific team. Proprietary human disease biology in the OrganoPlate® platform. Together we make the therapeutics of tomorrow.
    • All Services
      • We offer several services to support your drug discovery and development needs. Find the overview here.
  • Applications
    • Perfused Tubules
      • Layered tissues with perfused tubules in the absence of artificial membranes form the heart of our permeability and transport science. Study cell interactions, permeability, absorption, transport, and transcytosis without physical barriers.

    • Cell-Cell Interactions
      • Co-culture layered & structured tissues without artificial membranes with perfect imaging, to study barrier-free cellular interactions, cell-cell signaling, and migration.

    • 3D Cell Migration
      • Evaluate the effect of chemotactic triggers or cells on the migration of cells through an extracellular matrix.

    • Angiogenesis
      • Membrane-free microvascular formation and growth through an extracellular matrix (ECM).

    • Vascularization
      • The missing link in tissue culture: add perfusable human vasculature to your tissue models, and recreate sophisticated microenvironments with OrganoPlate® Graft.

    • All Applications
      • OrganoPlate® enables you to study relevant 3D tissue biology by incorporating perfused tubules, co-culture, and full control over the tissue microenvironment. Find the overview of applications here.

  • Resources & Support
    • Knowledge Center
      • Visit our Knowledge Center to get up to speed with 3D tissue culture and to learn how OrganoPlate® supports your research needs.

        Read our publications, application notes, watch our webinars, or check out the supporting protocols and brochures. All compiled for you, by our scientists.

    • Publications
      • Get inspired by peer-reviewed publications of our scientists, partners, and customers around the globe.

    • Case Studies
      • Get inspired by research done by our scientists, partners, and customers around the globe.

    • Blogs
      • Giving you some food for thought. Read our blogs to learn more about 3D tissue culture, research backgrounds, developments, and its future outlook.
    • Workshops & Trainings
      • Kickstart your experiments with the most sophisticated 3D tissue culture platform. Find out which training fits your 3D tissue modeling needs best.
    • Technical Support
      • Any support questions about purchasing, products, or 3D tissue culture and analysis? Get in touch with our experts.
    • Request a quote
      • Thinking of using OrganoPlate for your research? Request a quote for the product(s) of your interest.

    • FAQ
      • Frequently asked questions answered by our experts. Find here the answer you're looking for.
  • About Mimetas
  • Start today with 3D tissue modeling>
    Kickstart successfully your first experiments with the OrganoPlate® through our OrganoStart packages.
  • OrganoFlow® >
    Driving precisely-controlled perfusion flow in the OrganoPlate® platform

  • OrganoTEER® >
    Enabling fast, automated, and impedance-based TEER measurements in OrganoPlate®. Assay 40 tissue culture chips with a few clicks, in less than one minute.

  • Start today with 3D tissue modeling>
    Kickstart your experiments with the most sophisticated 3D tissue culture platform. Find out which training fits your 3D tissue modeling needs best.
  • OrganoPlate® is the solution for all in vitro tissue culture applications. Explore the entire OrganoPlate® family and its dedicated instruments here.

  • Thinking of using OrganoPlate for your research? Request a quote for the product(s) of your interest.

  • Get robust compound data in human tissue models through our OrganoServices. With proven pheno­typic assays in the OrganoPlate® platform, we support your drug discovery and development needs.
  • We create novel human tissue and disease models in the OrganoPlate® platform. Our experts are looking forward to developing assays according to your specifications.
  • Expand your drug discovery capacity, shoulder to shoulder with our scientific team. Proprietary human disease biology in the OrganoPlate® platform. Together we make the therapeutics of tomorrow.
  • We offer several services to support your drug discovery and development needs. Find the overview here.
  • Layered tissues with perfused tubules in the absence of artificial membranes form the heart of our permeability and transport science. Study cell interactions, permeability, absorption, transport, and transcytosis without physical barriers.

  • Co-culture layered & structured tissues without artificial membranes with perfect imaging, to study barrier-free cellular interactions, cell-cell signaling, and migration.

  • Evaluate the effect of chemotactic triggers or cells on the migration of cells through an extracellular matrix.

  • Membrane-free microvascular formation and growth through an extracellular matrix (ECM).

  • The missing link in tissue culture: add perfusable human vasculature to your tissue models, and recreate sophisticated microenvironments with OrganoPlate® Graft.

  • OrganoPlate® enables you to study relevant 3D tissue biology by incorporating perfused tubules, co-culture, and full control over the tissue microenvironment. Find the overview of applications here.

  • Visit our Knowledge Center to get up to speed with 3D tissue culture and to learn how OrganoPlate® supports your research needs.

    Read our publications, application notes, watch our webinars, or check out the supporting protocols and brochures. All compiled for you, by our scientists.

  • Get inspired by peer-reviewed publications of our scientists, partners, and customers around the globe.

  • Get inspired by research done by our scientists, partners, and customers around the globe.

  • Giving you some food for thought. Read our blogs to learn more about 3D tissue culture, research backgrounds, developments, and its future outlook.
  • Kickstart your experiments with the most sophisticated 3D tissue culture platform. Find out which training fits your 3D tissue modeling needs best.
  • Any support questions about purchasing, products, or 3D tissue culture and analysis? Get in touch with our experts.
  • Thinking of using OrganoPlate for your research? Request a quote for the product(s) of your interest.

  • Frequently asked questions answered by our experts. Find here the answer you're looking for.
  • Learn about our mission, vision, the history of the company, and find out what we mean with MIMETAS-do.
EN

Perfused 3D Angiogenic Sprouting In A High-Throughput In Vitro Platform

On-Demand Webinar

Studying angiogenesis in a manner that is representative of the in vivo situation can be a challenging task. Crucial elements in modeling angiogenesis are the formation of 3-dimensional sprouts having a lumen and clearly defined tip and stalk cells. Other important aspects include the presence of an extracellular matrix and the perfusion of blood vessels. What if there was a way to study angiogenesis in vitro in a way that would allow you to model all these aspects of angiogenesis in an easy and quick way.

  • You could not only study the onset of angiogenesis, but also key aspects that occur during the maturation phase.
  • You would be able to access the lumina of your angiogenic sprouts, and perfuse them too.
  • Would you like to apply a stable gradient of growth factors to direct the formation of capillaries?

You can do that too!

Think about all the possibilities that would open up, if you had such a system. In this webinar, you will learn about a robust microfluidic platform (OrganoPlate®) that will allow you to do all of the above. The OrganoPlate® platform is already successfully being used by the top 10 pharma as well as by hundreds of academic researchers worldwide. Unlike most microfluidic devices used today, the OrganoPlate® does not make use of any tubings nor pumps. As a matter of fact, it looks and handles exactly like a standard 384-wells plate. This means that it is compatible with all your equipment. In this webinar, you will learn how to work with collagen gel, form a blood vessel, applying a perfusion flow and creating a gradient of angiogenic factors so that you can study the onset of angiogenesis, as well as key aspects that occur during the maturation phase.

What you will learn

  1. How to study the initiation and progression of angiogenic sprout formation
  2. How to build perfusable 3D microvessels
  3. How to create a stable and reproducible gradient for your sprouting angiogenesis studies
  4. How to easily assess the permeability and integrity of the lumen and gauge your model leak-tightness


What others have said about the OrganoPlate®

“With the MIMETAS OrganoPlate, we developed a 3D brain-on-a-chip model that made easy to do high-throughput and high-content imaging to evaluate the acute toxicity of neurotoxins. OrganoPlate allowed the study of membrane-free vascular formation in a dynamic environment and further provided reliable and repeatable experiments with strong imagining capability.” — Dr. Yeoheung Yun, Associate Professor at North Carolina A&T State University

“Often you have to compromise: it’s either the throughput or it’s the complexity of the model. Getting both in the same platform…no other platforms can do that!” – Senior Scientist from top pharma


About the speaker
Vincent van Duinen is a PostDoc at Leiden Academic Centre for Drug Research (The Netherlands). His work is focused on researching angiogenesis in 3D microfluidic platforms.

Related publications

 


Register Here

Cookies

‘May we use cookies?
Hi there! Thanks for visiting our website. We use cookies to keep track of our website statistics to optimize the user experience. We also use cookies for marketing purposes. You can set your preferences by selecting the options below.

Accept all
Accept selected
Decline all