1. Objective

Seeding of cells against extracellular matrix (ECM) gel in an OrganoPlate® 2-lane for tubule formation.

2. Background

Tubular structures, such as endothelial or epithelial barrier tissues, are established in the OrganoPlate® by growing cells against an ECM gel. Morphology and function of the tubule can be assessed by microscopy, a barrier integrity assay, or other functional assays.

This protocol describes the culture of a tubule against ECM in the top lane of an OrganoPlate® 2-lane (see figure 1 and 2). In case both apical and basal access to the tubule are required for your experiment, the OrganoPlate® 3-lane should be used (see protocol *OrganoPlate® 3-lane tubule seeding*).

3. Materials

- OrganoPlate® 2-lane (MIMETAS, 9605-400-B)
- Collagen-I 5 mg/mL (AMSbio Cultrex® 3D collagen I rat tail, 5 mg/mL, #3447-020-01)
- 1 M HEPES (Life Technologies 15630-122, pH 7.2-7.5)
- 37 g/L NaHCO₃ (Sigma S5761-500G, dissolve in sterile MilliQ water, adjust pH to 9.5 using NaOH)
- Medium (12 mL per OrganoPlate® plate)
- Cells: seeding density is dependent on the cell type
 - Repeating pipette for gel loading and cell seeding, we recommend:
 - The Eppendorf® Multipette® M4 with the Eppendorf® Biopur® 0.1 mL tip (VWR #613-2067) for dispensation of 2 µL, or
 - The Sartorius eLINE® electronic pipette (Sartorius, #735021) for accurate dispensation of volumes ranging from 0.2 to 10 µL. Use with corresponding Sartorius tips or with Eppendorf® ep Dualfilter tips (Eppendorf, 022491211 / 0030077512)
- Multichannel pipette (1200 µL and 300 µL) with tips
- Crushed ice
4. Tubule seeding in the OrganoPlate®

A collagen-I ECM gel is loaded in the gel inlet of the OrganoPlate® and fills the gel channel. After polymerization of the gel, a cell suspension is seeded in the medium inlet and fills the medium channel. After cell attachment, medium perfusion is started to aid the formation of a tubule (see figure 3).

Figure 3: Schematic representation of tubule culture against ECM gel in the 2-lane OrganoPlate®

Load ECM gel in the OrganoPlate®

Note: avoid touching the bottom glass plate of the OrganoPlate®

1. Take the OrganoPlate® from the packaging
2. Add 50 µL of HBSS to all observation windows (columns 3, 7, 11, 15, 19, 23) using a multichannel repeating pipette
3. Prepare the required amount of ECM gel (e.g. 2 µL gel per chip + 40% extra)
 a. Collagen-I 4 mg/mL preparation
 i. Place an Eppendorf tube on ice
 ii. The collagen-I 4 mg/mL gel is prepared by mixing 1 M HEPES, 37 g/L NaHCO₃, and 5 mg/mL collagen-I in a 1:1:8 ratio. For example, to prepare 100 µL of gel:
 ▪ Place an Eppendorf tube on ice
 ▪ Mix 10 µL of 1 M HEPES with 10 µL of 37 g/L NaHCO₃
 ▪ Add 80 µL of collagen-I 5 mg/mL to the HEPES/NaHCO₃ mixture
 iii. Prepare at least 100 µL of total gel volume to ensure proper mixing of all components
 iv. Mix well by pipetting the mixture up and down >20 times, while keeping it on ice
 v. If bubbles are formed, quickly spin the tube down (~5 seconds)
 vi. Use gel immediately after preparation (within 10 minutes)
4. Dispense the gel into the gel inlet (columns 1, 5, 9, 13, 17, 21) using the Sartorius eLINE electronic pipette
 a. Gently place your pipette tip on top of the hole in the bottom of the well and dispense the gel. Contact between the pipette tip and the hole is essential for gel loading. Correct positioning of the gel on top of hole allows capillary forces to pull the gel into the microfluidic gel channel (see figure 4).
 b. The optimal loading volume depends on several factors, such as the viscosity of the gel and the temperature in the lab
 c. Start by loading 2 µL of gel per gel inlet
 d. In case of incomplete gel filling, increase the loading volume (i.e. to 2.3 µL)
 e. In case the gel overflows from the gel channel into the adjacent medium channel, reduce the loading volume (i.e. to 1.7 µL)
 f. For examples of correct gel filling in the OrganoPlate® 2-lane, see figure 5 below.

![Figure 4: Gel loading](image)

![Figure 5: Overview of correct gel filling, incomplete gel filling, and overflow in the OrganoPlate® 2-lane](image)

Both the Eppendorf® Multipette® M4 and the Sartorius eLINE electronic pipette can successfully be used to load gel in the OrganoPlate®. Table 1 shows an overview of each pipette’s advantages and disadvantages for gel loading.

<table>
<thead>
<tr>
<th>Pipette for gel loading</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eppendorf® Multipette® M4</td>
<td>Allows user to load many chips in one go without having to reload the pipette tip*</td>
<td>Only allows whole-microliter volumes (1 µl, 2 µL, etc.), making it more difficult to correct incomplete gel filling or overflow</td>
</tr>
<tr>
<td>Sartorius eLINE® electronic pipette</td>
<td>Allows user to select the loading volume with 10 nL steps, such as 1.75 µL, 1.80 µL, 1.85 µL, etc.</td>
<td>Total volume of pipette is 10 µL, allowing user to load approximately 5 chips at a time before having to reload the pipette</td>
</tr>
</tbody>
</table>

*We recommend loading a maximum of 16 chips at once before emptying and reloading the pipette tip with cold gel. This will avoid gelation of the gel while it is in the pipette tip.
5. Place the OrganoPlate® in a humidified incubator (i.e. 37°C, 5% CO2) for 15 minutes to allow polymerization of the collagen-I gel
6. Add 30 µL of HBSS to the gel inlet (columns 1, 5, 9, 13, 17, 21) to prevent the gel from drying out
7. Place the OrganoPlate® back in the incubator and proceed to cell seeding
 a. You can choose to proceed to cell seeding immediately or to wait until the next day. While cells generally form tubules with either option, some cell types show optimal results when seeded one day after gel loading.

Seed cells against the ECM gel

Note: avoid touching the bottom glass plate of the OrganoPlate®

1. Harvest cells according to their dissociation protocol
2. Count the number of live cells in the cell suspension
3. Calculate the required number of cells for seeding in the OrganoPlate® and pellet them
 a. The optimal cell density for seeding against ECM in the OrganoPlate® is cell type dependent (generally between 5,000 and 20,000 cells/µL)
 b. For example:
 i. Number of chips to seed: 96
 ii. Volume of cell solution to seed per chip: ~2 µL
 iii. Seeding density: 10,000 cells/µL
 iv. You need: 96 x 2 x 10,000 = 1.92*10⁶ cells
 v. Prepare 25% extra: pellet 2.4*10⁶ cells
4. Resuspend pellet in [2.4*10⁶ / 10,000 =] 240 µL medium to obtain a 10,000 cells/µL cell suspension
5. Remove HBSS from the gel inlets
6. Seed 2 µL of cell suspension in the medium inlet (columns 2, 6, 10, 14, 18, 22) using the same pipetting procedure as previously used for gel loading (see figure 4)
 a. Regularly resuspend the cell suspension during seeding to ensure homogenous cell density
 b. In case you want to include cell-free controls, seed 2 µL of medium without cells in the medium inlet of these chips (instead of the cell suspension)
7. Add 50 µL of medium to the medium inlet (columns 2, 6, 10, 14, 18, 22)
8. Place the OrganoPlate® on its side in the MIMETAS plate stand (see figure 6) in the incubator to allow cells to attach
 a. The time cells need to attach is cell type dependent and generally varies between 2-6 hours

![Figure 6: Incubate the OrganoPlate® on the side to allow cells to attach to the ECM gel](image)
9. After cells have attached, add 50 µL of medium to the medium outlet (columns 4, 8, 12, 16, 20, 24)
 a. Ensure that the medium has filled the channel completely
 b. Ensure that no air bubbles are trapped on medium inlet and outlet. If bubbles are trapped, remove the bubbles gently with a pipette tip
10. Place the plate on the OrganoFlow® in a humidified incubator to start cell culture (see figure 7)
 a. An inclination of 7° and an interval of 8 minutes is optimal for most cultures

Figure 7: Place the OrganoPlate® on the OrganoFlow® in the correct orientation

11. Refresh medium every 2-3 days by aspirating and replacing the medium from medium inlets and outlets (50 µL in each) using a repeating multichannel pipette
12. An example of a tubule culture against ECM gel in the OrganoPlate® 2-lane is shown in figure 7.

Figure 7: LLC-PK1 (epithelial cells) cultured against collagen-I gel in the 2-lane OrganoPlate®

5. Troubleshooting

Cell invasion

In case of undesired cell invasion into the gel, the use of MMP inhibitors is recommended (e.g. addition of 10 µM of MMP-I inhibitor GM6001 (Abcam, ab120845) to the culture medium).
Plate layout

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
MIMETAS product list

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Product Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI-AR-CC-01</td>
<td>OrganoReady® Caco-2</td>
</tr>
<tr>
<td>9605-400-B</td>
<td>OrganoPlate® 2-lane</td>
</tr>
<tr>
<td>4004-400-B</td>
<td>OrganoPlate® 3-lane 40</td>
</tr>
<tr>
<td>6405-400-B</td>
<td>OrganoPlate® 3-lane 64</td>
</tr>
<tr>
<td>6401-400-B</td>
<td>OrganoPlate® Graft</td>
</tr>
<tr>
<td>MI-OFPR-S</td>
<td>OrganoFlow® S</td>
</tr>
<tr>
<td>MI-OFPR-L</td>
<td>OrganoFlow® L</td>
</tr>
<tr>
<td>MI-OT-1</td>
<td>OrganoTEER®</td>
</tr>
</tbody>
</table>

Contact information

For questions, please contact us through the e-mail addresses stated below

Purchasing: order@mimetas.com

Customer service: info@mimetas.com

Technical support: support@mimetas.com

MIMETAS Europe
J.H. Oortweg 19
2333 CH, Leiden
The Netherlands
Phone: +31 (0)85 888 3161

MIMETAS USA
704 Quince Orchard Road
Suite 260, MD 20878
Gaithersburg, USA
+1 (833) 646-3827

MIMETAS Japan
4F Tekko Building,
1-8-2 Marunouchi, Chiyoda-Ku
Tokyo, 100-0005, Japan
+81 3-6870-7235

This protocol is provided ‘as is’ and without any warranties, express or implied, including any warranty of merchantability or fitness for a particular purpose or assured results, or that the use of the protocol will not infringe any patent, copyright, trademark, or other proprietary rights. This protocol cannot be used for diagnostic purposes or be resold. The use of this protocol is subject to Mimetas’ General Terms and Conditions of Delivery, Purchase and Use.

MIMETAS®, OrganoPlate®, OrganoFlow®, OrganoReady®, and OrganoTEER® are registered trademarks of MIMETAS BV. Cultrex® is a registered trademark of Trevigen, Inc. eLINE® is a registered trademark of Sartorius Biohit Liquid Handling Oy. Eppendorf® is a registered trademark of Eppendorf AG, Germany.